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Abstract

We present a perceptually-based approach for compressing synthetic aperture radar (SAR) im-

agery. Key components of the approach are a multiresolution wavelet transform, a bit allocation

mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantiza-

tion. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients

into three components: local means, edges, and texture. Each of these three components is then

quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients

associated with local means and edges are quantized using high-rate scalar quantization while

texture information is quantized using low-rate vector quantization.

We assess the impact of the perceptually-based multiresolution compression algorithm on vi-

sual image quality, impulse response, and texture properties for fine-resolution magnitude-detected

SAR imagery and find excellent image quality at bit rates at or above 1 bpp along with graceful

performance degradation at rates below 1 bpp-

1 Overview

We present a perceptually-based compression algorithm along with a preliminary evaluation

of its performance on fine-resolution synthetic aperture radar (SAR) imagery. Properties of

the algorithm are: (i) spatial adaptability to accommodate both the large dynamic ranges

and unique image textures seen in SAR imagery, and (ii) the use of perceptually-based

design criteria to optimize image quality rather than mean-squared error. Key components

of the approach are a multiresolution wavelet transform, a bit allocation method based on

an empirical human visual system (HVS) model, and hybrid scalar/vector quantization.

A consistent motivation for the multiresolution decomposition is its conceptual similarity

to scene decompositions performed by the human visual system, which set the stage for

application of simple, effective HVS bit allocation schemes. Our algorithm is similar in

spirit to the wavelet coding techniques described in [1, 7, 11, 16] and the subband coding

techniques in [14, 15]. The main distinction between our approach and others is the use

of a fixed-weight perceptually-based bit allocation scheme that accounts for both the large

dynamic range and texture patterns (speckle) present in SAR imagery.

Wavelet shrinkage techniques [6] are used to segregate wavelet transform coefficients into

three components: local means, edges, and texture. Each of these three components is then

quantized separately according to a perceptually-based bit allocation scheme. Because edges

and low frequency information are perceptually most important [13], wavelet coefficients

associated with local means and edges are quantized using high-rate scalar quantlzation
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while texture information is quantized using low-rate vector quantization. A minimum rate

constraint is set for the local mean and edge components so that essential image content is

preserved even at bit rates as low as 1/8 bpp.

The perceptually-based bit allocation scheme is implemented by applying a bit-allocation

weighting table to the wavelet transform coefficients. Our approach uses a fixed table rather

than the weighted mean-squared error approach reported in [14]; in the latter reference, a

data-dependent bit allocation table was used, in which each subband weight was scaled by

the standard deviation of that subband. Based on empirical evidence collected to date, we

find that fixed-weight bit allocation may be more appropriate for SAR imagery.

The remainder of the paper is organized as follows. Section 2 contains a heuristic dis-

cussion of SAR image characteristics. We describe the compression algorithm in Section 3.

Preliminary results, in terms of qualitative perceptual quality and image quality measures

are presented in Section 4.

2 SAR Image Characteristics

SAR imagery is often characterized by a large dynamic range and a characteristic texture,

typically referred to as "speckle." As a result, SAR imagery typically has a large data entropy

and is often much more difficult to compress than optical or computer-generated imagery.

Specifically, electromagnetic scattering properties of man-made objects and natural terrain

yield two characteristic features present in typical fine-resolution SAR imagery, specular

glints or flashes and speckle. Specular returns appear as bright points or edges and typically

arise from the radar returns from man-made objects, such as buildings and vehicles, and

discrete clutter, such as tree trunks or rocks. Figure 1 shows a fine-resolution SAR image

of part of a golf course. Present in the image are point-like specular returns from three

trihedral reflectors along with edge-like returns from the roofs of two buildings.

Speckle is caused by diffuse scattering from surfaces that are rough compared to the

wavelength of the radar [8]. Radar returns from natural terrain are often modeled as having

a Rayleigh distribution with a parameter dependent on the mean terrain reflectivity. In

Figure 1 one can see the edge between two different types of vegetated terrain.

Image analysts who work with fine resolution SAR imagery focus both on the image

patterns caused by specular returns from man-made objects as well as the image texture

caused by diffuse returns from natural terrain. In particular, the analyst may be required to

perform object recognition, in which case the contextual Information provided by the highly

textured natural terrain may be just as important as the radar signature of a man-made

object. Therefore, in order to preserve the analyst's ability to interpret the imagery, it is

important that both the edges and image texture are preserved. The approach we take is

to separate the image into its specular and diffuse components and encode each separately

using a perceptually-based bit allocation scheme.

2.1 Multiresolution Decomposition and Wavelet Shrinkage

A simple, nonparametric approach for extracting the edge information from imagery is to

use wavelet shrinkage [6]. Donoho and Johnstone have shown that the wavelet transforms
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Figure 1" ADTS SAR image of a golf course. Specular returns can be seen from

calibration trihedrals and buildings, while natural terrain yeilds diffuse returns (e.g.,

speckle).
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of a broad classof functions, including piecewise-continuousfunctions, havea compact rep-
resentation in the wavelet transform domain. On the other hand, an orthogonal discrete
wavelet transform applied to white noiseyields white noisehaving the samespectral den-
sity as before. Donoho and Johnstoneproposea simple schemefor extracting smooth and
piecewise-continuoussignalsfrom white noise: take the wavelet transform of the sampled
noisy signal and apply a soft threshold to removesmall wavelet transform coefficientsthat
are likely to be noise.

In our context the speckle,or image texture in a SAR image,can be viewedas a nearly
spatially-white but nonstationary noiseprocess,while the edges,or specular returns, can
be viewed as smooth or piecewisecontinuousfunctions. Figure 2 showsa multiresolution
waveletdecompositionof the farm scenealongwith its decompositioninto threecomponents:
local means,edges,and texture.

This decomposition is accomplishedas follows. The four coefficient Daubechiesfilter
[5] is usedto perform a two-dimensionalmultiresolution waveletdecompositionof the SAR
imagery. (Previous empirical evidencehasshownthat short-length waveletfilters are better
than longer length filters for preservingpoints and edgesin SAR imagery [18].) We usethe
decompositionspecifiedby Mallat [12]to separatethe imagecontentaccordingto spatial fie-
quencyand orientation. Throughout the remainderof the paperwewill usethe terminology
of [12] and refer to subsetsof the 2-D wavelettransform as "detail" images.The local means

portion of our decomposition corresponds to the "coarse detail," or lowest resolution detail

image. The edges component consists of all wavelet coefficients exceeding the soft threshold

or wavelet coefficient shrinkage operation [6]. Finally, the texture component is all of the

remaining small coefficients.

3 SAR Image Compression

We use the decomposition shown in Figure 2 as the basis for our compression algorithm.

Figure 3 shows a schematic representation of the algorithm, which consists of four stages: a

multiresolution wavelet transform (followed by gain normalization of the wavelet coefficients

within each detail image), wavelet shrinkage to separate the image data into local means,

edges, and textures, perceptually-based bit allocation based on a human visual system model

(tIVS), and a hybrid scalar/vector quantization operation.

After the 2-D wavelet decomposition has been performed, the coefficients of each detail

image in the wavelet decomposition are gain normalized. Gain normalization allows the same

vector quantizer to be used for multiple levels of the wavelet decomposition, and increases

the efficiency of the vector quantizer. These normalization factors must be transmitted as

side information.

Quantization bits are allocated to the wavelet coefficients according to human visual

sensitivities to spatial frequency and spatial orientation, and according to whether the coef-

ficients are edges, local means, or texture. The coefficients corresponding to the local means

are allotted more bits than the texture coefficients. Moreover, a minimum rate is set for the

edge coefficients so that when the overall data rate decreases, the edge coefficients are quan-

tized and transmitted while tile texture coefficients may not be transmitted at all. However,

when the data rate is high, both edge and texture coefficients are allocated bits based upon
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Multiresolution Wavelet Decomposition of a Magnitude-Detected

SAR Image Into Three Sources:

Original Local Means

Edges Texture

Figure 2: Decomposition of the ADTS image into local means, edges, texture

components
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Figure 3: The perceptually-based compression algorithm consists of a wavelet multiresolution

transform that is separated into local means, edges, and textures, followed by a hybrid

scalar/vector quantizer with perceptually-based bit allocation.
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perceptual sensitivity to spatial frequency and spatial orientation.

The bit allocation to spatial frequency and orientation differs from other HVS bit alloca-

tion methods in that it is completely independent of the statistics of the wavelet coefficients

in each band. In other words, bits are allocated based solely on human visual system sensi-

tivities rather than upon energy or mean-squared error considerations. The spatial frequency

weights that are used for bit allocation are derived from equations developed for subband

coding [14], which are based upon human contrast sensitivity data acquired by Campbell

and Robson [2]. The equation used for bit allocation to each level of the multiresolution

decomposition is given by:

1 [(WHys(k)'/A(k))/a_vs]B(k) = Btot + -_ log2 (1)

where B(k) is the average number of bits allocated to detail image k, Btot is the overall

average bit rate, WHys(k) is the human visual system weight obtained from the equation

of Perkins and Lookabaugh [14], A(k) is the relative area of detail image k, and a_v s is a

weighted geometric mean of the squared WHys(k).

Vector quantizers (VQs) for 2 × 2 texture blocks were combined with adaptive scalar quan-

tizers for edges and local means in a hybrid quantization scheme. The VQs we used were

tree-structured variable-rate VQs [9] that were pruned using the optimal pruning algorithm

of [4]. To maximize performance of the texture VQs, separate codebooks were created for the

vertical, horizontal and diagonal texture components. As mentioned earlier, the edges and

local means were quantized using high rate uniform scalar quantizers, while edge locations

were coded using an error-resistant binary source coding technique [3]. The scalar quan-

tizer step size was adapted in each detail image with dynamic range and wavelet shrinkage

thresholds. Finally, the vector and scalar quantized coefficients were entropy coded.

4 An Example

The perceptual compression algorithm described above was applied to detected SAR imagery

(remapped to 8 bpp) obtained from Lincoln Laboratory's Advanced Detection Technology

Sensor (ADTS) System [10]. The resolution of this imagery is one foot in both the range and
azimuth dimensions. Parameters for the HVS bit allocation and wavelet shrinkage threshold

were determined by the viewing geometry, subjective evaluations, and available bit budget.

Figure 4 shows compressed versions of the farm scene at rates of 1, 1/2, and 1/4 bits

per pixel (bpp). The visual quality of the SAR imagery compressed with the perceptual

algorithm is excellent at moderate compression ratios (e.g. 8:1). As the compression ratio

increases, the image quality degrades gracefully with minimal smearing of the edges and

points. Even at very high compression ratios (e.g. 64:1), the images are recognizable. Also,
there are no blockiness artifacts like those that are characteristic of the current version of

the JPEG DCT algorithm [17] at rates below 1 bpp.

Finally, Figures 5 and 6 show plots of the measured impulse response (IPR) 3dB widths

and image texture, as measured by coefficient of variation, for three different compression

rates, 1, 1/2, and 1/4 bpp. Figure 5 contains a summary of several IPR measurements

extracted from calibration trihedral signatures within the ATDS imagery. Both the mean
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Perceptually-Based Multiresolution Compression of

Magnitude-Detected SAR Imagery

Original (8 bpp) Compressed to 1 bpp (8:1)

Compressed to 0.5 bpp (16:1) Compressed to 0.25 bpp' (32:1)

Figure 4: ADTS image compressed to 1, 1/2, and 1/4 bpp
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IPR measurementsin range and azimuth, along with 95% confidencebounds are plotted.
What one canobserveis that, on average,the IPRs only degradefrom an original sampling
rate of 1.3 samplesper IPR to roughly 1.5 samplesper IPR at a compressionrate of 32:1
(i.e., 0.25 bpp). On the other hand, the variability of the IPR measurementsincreases
dramatically asthe data rate decreases.

Figure 6 showsa plot of the inversecoefficientof variation (mean divided by standard

deviation deviation) for a number of local measurements of terrain. Both the mean and upper

and lower 95% confidence bounds are plotted for measurements taken over 144 different

15x15 pixel regions containing natural terrain. What we see is that as the data rate is

decreased from 8 bpp (no compression) to 0.25 bpp, there is a loss of texture as measured

by the increases in the inverse coefficient of variation. At 1 bpp there is a 26% increase

in as compared to the original 8 bpp image, however, we observe no significant perceptual

degradation. At 0.25 bpp, there is a 66% increase in the inverse coefficient of variation and

noticeable smoothing of the image texture.

5 Summary

The perceptually-based multiresolution SAR compression algorithm presented here consists

of a wavelet multiresolution decomposition followed by wavelet shrinkage, perceptually-based

bit allocation, and hybrid scalar/vector quantization. An important feature that makes this

particular approach appropriate for SAR imagery is the use of spatially-adaptive edge detec-

tion, via wavelet shrinkage techniques, to separate the image into three components: local

means, edges, and texture. Each of these three components is then quantized separately us-

ing perceptual bit allocation mask. Based on preliminary results, we find that the algorithm

provides excellent image quality at rates at or above 1 bpp and degrades gracefully below 1

bpp.
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